Praksa biološke faze čiščenja mlekarske odpadne vode za zaščito habitata Proteus anguinus

Avtorji

DOI:

https://doi.org/10.55707/eb.v12i2.150

Ključne besede:

Proteus anguinus, odpadne vode , mlekarska industrija, biološko čiščenje , Slovenija

Povzetek

Slovenija je ena redkih držav, kjer živi človeška ribica (Proteus anguinus), katere habitat se večinoma nahaja na območju Nature 2000. V tem okolju deluje tudi mlekarna Krepko, ki mora skladno z zakonodajo odpadno vodo pred izpustom očistiti. Zaradi občutljivosti vrste P. anguinus ima čistilna naprava mlekarne tri faze čiščenja: primarno, sekundarno in terciarno. Ključna je sekundarna, biološka faza, ki poteka v sekvenčnem šaržnem reaktorju z aktivnim blatom in omogoča odstranjevanje amoniaka ter nitrata. Za izboljšanje učinkovitosti denitrifikacije pri nizkih temperaturah se dodaja železov klorid kot hranilo za mikroorganizme. Kakovost obdelave se ocenjuje glede na prisotnost amoniaka, usedanje biomase ter vrednosti kemijske porabe kisika in dušika. Rezultati kažejo, da dodajanje železovega klorida spodbuja rast mikroorganizmov, pospešuje denitrifikacijo in izboljšuje parametre kakovosti vode, kar pozitivno vpliva na varstvo habitata vrste P. anguinus.

Literatura

Ahansazan, B., Afrashteh, H., Ahansazan, N. in Ahansazan, Z. (2014). Activated sludge process overview. International Journal of Environmental Science and Development, 5(1).

Ai, C., Yan, Z., Zhou, H., Hou, S., Chai, L., Qiu, G. in Zeng, W. (2019). Metagenomic insights into the effects of seasonal temperature variation on the activities of activated sludge. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120713

Alagha, O., Allazem, A., Bukhari, A. A., Anil, I. in Muʹazu, N. D. (2020). Suitability of SBR for wastewater treatment and reuse: Pilot‐scale reactor operated in different anoxic conditions. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051617

Al-Wasify, R. S., Ali, M. N. in Hamed, S. R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Science and Technology, 76(11), 3094–3100. https://doi.org/10.2166/wst.2017.481

Azeez, G. K., AlJaberi, F. Y., Ahmed, S. A. in Hussain, A. A. (2023). Sequencing batch reactor (SBR) technology in wastewater treatment: A mini-review. AIP Conference Proceedings, 2806(1). https://doi.org/10.1063/5.0163432

Balázs, G. in Lewarne, B. (2020). Observed air-breathing behaviour of Proteus anguinus individuals under an intermittent hypoxic scenario in their natural habitat, with details of the prevailing environmental conditions. Observations in Speleology, 6, 2–7.

Bastian, R., Buys, A., Klapwijk, H., Elissen, W. H. in Rulkens, W. H. (2008). Development of a test method to assess the sludge reduction potential of aquatic organisms in activated sludge. Bioresource Technology, 99(17), 8360–8366. https://doi.org/10.1016/j.biortech.2008.02.041

Bizjak Mali, L., Sepčić, K. in Bulog, B. (2013). Long-term starvation in cave salamander: Effects on liver ultrastructure and energy reserve mobilization. Journal of Morphology, 274(8), 887–900. https://doi.org/10.1002/jmor.20145

Brehar, M. A., Várhelyi, M., Cristea, V. M., Crîstiu, D. in Agachi, Ş. P. (2019). Influent temperature effects on the activated sludge process at a municipal wastewater treatment plant. Studia Universitatis Babes-Bolyai Chemia, 64(1), 113–123. https://doi.org/10.24193/subbchem.2019.1.09

Burgess, J. E., Quarmby, J. in Stephenson, T. (1999). Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnology Advances, 17(1), 49–70. https://doi.org/10.1016/S0734-9750(98)00016-0

Chalasani, G. in Sun, W. (2007). Measurement of temperature effects on oxygen uptake rate in activated sludge treatment. Report, Michigan State University College of Engineering, USA.

Dohare, D. in Kesharwani, N. (2014). A review on wastewater treatment using sequential batch reactor. International Journal of Scientific Engineering and Technology, 3(9), 1135–1138.

Dong-Jin, K. in Sun-Hee, K. (2006). Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Research, 40(5), 887–894. https://doi.org/10.1016/j.watres.2005.12.023

Dutta, A. in Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: Recent advances. Current Pollution Reports, 1(3), 177–190. https://doi.org/10.1007/s40726-015-0016-y

Fdz-Polanco, F., Villaverde, S. in Garcia, P. A. (1994). Temperature effect on nitrifying bacteria activity in biofilters and free ammonia inhibition. Water Science and Technology, 30(11), 121–130.

Ghanizadeh, G. in Sarrafpour, R. (2001). The effects of temperature and pH on settlability of activated sludge flocs. Iranian Journal of Public Health, 30(3–4), 139–142.

Janczukowicz, W., Szewczyk, M., Krzemieniewski, M. in Pesta, J. (2001). Settling properties of activated sludge from a sequencing batch reactor (SBR). Polish Journal of Environmental Studies, 10(1), 15–20.

Kaur, N. (2021). Different treatment techniques of dairy wastewater. Groundwater for Sustainable Development, 14. https://doi.org/10.1016/j.gsd.2021.100640

Khalaf, A. H., Ibrahim, W. A., Fayed, M. in Eloffy, M. G. (2021). Comparison between the performance of activated sludge and sequence batch reactor systems for dairy wastewater treatment under different operating conditions. Alexandria Engineering Journal, 60(1), 1433–1445. https://doi.org/10.1016/j.aej.2020.10.062

Kushwaha, J. P., Srivastava, V. C. in Mall, I. D. (2013). Sequential batch reactor for dairy wastewater treatment: Parametric optimization, kinetics and waste sludge disposal. Journal of Environmental Chemical Engineering, 1(4), 1036–1043. https://doi.org/10.1016/j.jece.2013.08.018

Lapinski, J. in Tunnacliffe, A. (2003). Reduction of suspended biomass in municipal wastewater using bdelloid rotifers. Water Research, 37(9), 2027–2034. https://doi.org/10.1016/S0043-1354(02)00626-7

Laybourn-Parry, J., Boyall, J. in Rogers, P. (1999). The role of flagellated and ciliated protozoa in lagoon and grass filter sewage treatment systems. Water Research, 33(13), 2971–2977. https://doi.org/10.1016/S0043-1354(98)00523-5

Mees, J. B. R., Gomes, S. D., Hasan, S. D. M., Gomes, B. M. in Vilas Boas, M. A. (2013). Nitrogen removal in a SBR operated with and without pre-denitrification: Effect of the carbon:nitrogen ratio and the cycle time. Environmental Technology, 35(1), 115–123. https://doi.org/10.1080/09593330.2013.816373

Myszograj, S. (2015). The impact of temperature on the removal of nitrogen compounds in activated sludge system. British Journal of Applied Science & Technology, 11(1), 1–13. https://doi.org/10.9734/bjast/2015/18950

Nadarajah, N., Grant Allen, D. in Fulthorpe, R. R. (2007). Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function. Water Research, 41(12), 2563–2571. https://doi.org/10.1016/j.watres.2007.02.002

Roufou, S., Griffin, S., Katsini, L., Polańska, M., Van Impe, J. F. M. in Valdramidis, V. P. (2021). The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends in Food Science and Technology, 116, 1–10. https://doi.org/10.1016/j.tifs.2021.07.008

Shchegolkova, N. M., Krasnov, G. S., Belova, A. A., Dmitriev, A. A., Kharitonov, S. L., Klimina, K. M., Melnikova, N. V. in Kudryavtseva, A. V. (2016). Microbial community structure of activated sludge in treatment plants with different wastewater compositions. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00090

Shete, B. S. in Shinkar, N. P. (2013). Dairy industry wastewater sources, characteristics and its effects on environment. International Journal of Current Engineering and Technology, 1611–1615.

Sinha, S., Srivastava, A., Mehrotra, T. in Singh, R. (2018). A review on the dairy industry wastewater characteristics, its impact on environment and treatment possibilities. V T. Jindal (ur.), Emerging issues in ecology and environmental science (str. 73–84). Springer. https://doi.org/10.1007/978-3-319-99398-0_6

Slavov, A. K. (2017). General characteristics and treatment possibilities of dairy wastewater – A review. Food Technology and Biotechnology, 55(1), 14–28.

Sovon, H. S. (2005). Target species – species of European concern: A database driven selection of plant and animal species for the implementation of the Pan European Ecological Network. Alterra-report. Alterra, Wageningen.

Šobot, A. in Lukšič, A. (2020). Natura 2000 experiences in Southeast Europe: Comparisons from Slovenia, Croatia and Bosnia and Herzegovina. Journal of Comparative Politics, 13(1), 46–57.

Tao, C., Parker, W. in Bérubé, P. (2021). Characterization and modelling of soluble microbial products in activated sludge systems treating municipal wastewater with special emphasis on temperature effect. Science of the Total Environment, 779. https://doi.org/10.1016/j.scitotenv.2021.146471

Tesařová, M., Mancini, L., Mauri, E., Aljančič, G., Nǎpǎruş-Aljančič, M., Kostanjšek, R., Bizjak Mali, L., Zikmund, T., Kaucká, M., Papi, F., Goyens, J., Bouchnita, A., Hellander, A., Adameyko, I. in Kaiser, J. (2022). Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging. GigaScience, 11. https://doi.org/10.1093/gigascience/giac030

Yang, J., Liang, W. L. in Huang, F. C. (2021). Review of SBR process in effluent treatment. E3S Web of Conferences, 233. https://doi.org/10.1051/e3sconf/202123301120

Zayed, G. in Winter, J. (1998). Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification. Applied Microbiology and Biotechnology, 49, 469–474.

Prenosi

Objavljeno

2025-11-24

Kako citirati

Šobot, A., & Bilić Šobot, D. (2025). Praksa biološke faze čiščenja mlekarske odpadne vode za zaščito habitata Proteus anguinus. Revija Za Ekonomske in Poslovne Vede, 12(2), 3–17. https://doi.org/10.55707/eb.v12i2.150

Številka

Rubrike

Prispevki